Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Front Plant Sci ; 15: 1363251, 2024.
Article En | MEDLINE | ID: mdl-38742211

Introduction: The uridine diphosphate (UDP)-glycosyltransferase (UGT) family is the largest glycosyltransferase family, which is involved in the biosynthesis of natural plant products and response to abiotic stress. UGT has been studied in many medicinal plants, but there are few reports on Platycodon grandiflorus. This study is devoted to genome-wide analysis of UGT family and identification of UGT genes involved in drought stress of Platycodon grandiflorus (PgUGTs). Methods: The genome data of Platycodon grandiflorus was used for genome-wide identification of PgUGTs, online website and bioinformatics analysis software was used to conduct bioinformatics analysis of PgUGT genes and the genes highly responsive to drought stress were screened out by qRT-PCR, these genes were cloned and conducted bioinformatics analysis. Results: A total of 75 PgUGT genes were identified in P.grandiflorus genome and clustered into 14 subgroups. The PgUGTs were distributed on nine chromosomes, containing multiple cis-acting elements and 22 pairs of duplicate genes were identified. Protein-protein interaction analysis was performed to predict the interaction between PgUGT proteins. Additionally, six genes were upregulated after 3d under drought stress and three genes (PGrchr09G0563, PGrchr06G0523, PGrchr06G1266) responded significantly to drought stress, as confirmed by qRT-PCR. This was especially true for PGrchr06G1266, the expression of which increased 16.21-fold after 3d of treatment. We cloned and conducted bioinformatics analysis of three candidate genes, both of which contained conserved motifs and several cis-acting elements related to stress response, PGrchr06G1266 contained the most elements. Discussion: PgGT1 was confirmed to catalyze the C-3 position of platycodin D and only eight amino acids showed differences between gene PGr008G1527 and PgGT1, which means PGr008G1527 may be able to catalyze the C-3 position of platycodin D in the same manner as PgGT1. Seven genes were highly expressed in the roots, stems, and leaves, these genes may play important roles in the development of the roots, stems, and leaves of P. grandiflorus. Three genes were highly responsive to drought stress, among which the expression of PGrchr06G1266 was increased 16.21-fold after 3d of drought stress treatment, indicating that PGrchr06G1266 plays an important role in drought stress tolerance. To summarize, this study laied the foundation to better understand the molecular bases of responses to drought stress and the biosynthesis of platycodin.

2.
Nat Prod Res ; : 1-8, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684028

Two unusual N-containing heterocyclic compounds, Plagranlines B-C, were isolated from the roots of Platycodon grandiflorus. Plagranline B (1) was consisted of neolignane and monomeric quinoline constituent units and plagranline C (2) possessed pyridinone ring that was not commonly discovered in natural product. Their planar structures were elucidated based on analysis of NMR and HRESIMS spectroscopy data, and their absolute configurations were determined by quantum chemical calculations, including GIAO 13C NMR (DP4+) calculation and ECD calculation. In addition, extensive activity screening including glycosidases, oestrogen-like, and NO inhibitory assays were performed, compounds 1 and 2 possessed the weak activities.

3.
J Med Food ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498802

Obesity is a threat to public health and effective new medications are required. Platycodonis Radix (PR) is a traditional medicinal/dietary plant with activities against obesity. Using mice given a diet rich in fat, the antiobesity components of PR were identified and their molecular mechanisms were clarified further in this investigation. Initially, the impacts of PR fractions on liver histology and biochemical markers were assessed. Subsequently, the degrees of lipogenic and lipolytic gene and protein expressions were determined. Oral administration of PR polysaccharides (PG) (0.80 g/kg body weight) improved liver function (alanine aminotransferase and aspartate aminotransferase) and its antioxidant activities (total superoxide dismutase, glutathione peroxidase, and malondialdehyde), as well as alleviated blood lipid (total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) values, inflammatory systemic (TNF-α and IL-1ß), and histological abnormalities within the liver. Furthermore, PG administration downregulated the expression for lipogenic genes (ACC and FAS) and upregulated the expression for the lipolytic gene (PPARα, LPL, CPT1, and HSL). Importantly, PG raised AMPK phosphorylation and decreased SREBP-1c protein synthesis. Thus, it is possible that PG stimulates the AMPK-LPL/HSL path (lipolytic route) plus the AMPK-ACC/PPARα-CPT1 path (associated to ß-oxidation of fatty acids), while inhibiting the AMPK/(SREBP-1c)-ACC/FAS path (lipogenic route). In summary, PG has the ability to regulate lipid metabolism, and it may be useful to pharmacologically activate AMPK with PG to prevent and cure obesity.

4.
Int J Biol Macromol ; 257(Pt 1): 128617, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070802

The WRKY family of transcription factors (TFs) is an important gene family involved in abiotic stress responses. Although the roles of WRKY TFs in plant abiotic stress responses are well studied, little is known about the stress-induced changes in WRKY family in Platycodon grandiflorus. 42 PgWRKY genes in seven subgroups were identified in the P. grandiflorus genome. The content of eight platycodins in P. grandiflorus was investigated under cold, heat, and drought stresses. Platycodin D levels significantly increased under three abiotic stresses, while the content changes of other platycodins varied. Transcriptome analysis showed that different WRKY family members exhibited varied expression patterns under different abiotic stresses. PgWRKY20, PgWRKY26, and PgWRKY39 were identified as three key candidates for temperature and drought stress responses, and were cloned and analysed for sequence characteristics, gene structure, subcellular localisation, and expression patterns. The RT-qPCR results showed that PgWRKY26 expression significantly increased after heat stress for 48 h, cold stress for 6 h, and drought stress for 2 d (DS_2 d). The PgWRKY39 expression level significantly increased at DS_2 d. This study provides a theoretical basis for clarifying the molecular mechanism of the abiotic stress responses of the WRKY gene family in P. grandiflorus.


Platycodon , Platycodon/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant , Cold-Shock Response , Gene Expression Profiling/methods , Phylogeny , Gene Expression Regulation, Plant
5.
Planta ; 258(6): 115, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37943378

MAIN CONCLUSION: Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.


Platycodon , Saponins , Farnesyl-Diphosphate Farnesyltransferase/genetics , Platycodon/genetics , Escherichia coli/genetics , Saponins/genetics
6.
Nat Prod Res ; : 1-5, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37526625

A phytochemical investigation of the tuber of Bletilla striata afforded eight stilbene derivatives, including a new bibenzyl (1) and two new phenanthrene (2 and 3). The structures of these compounds were elucidated using a combination of spectroscopic analyses. Further, the anti-inflammatory activity of all the compounds was evaluated to assess their capability to inhibit nitric oxide (NO) production by RAW 264.7 macrophages. The bioactive screening revealed that compounds 4 and 7 exhibited moderate inhibitory effects against NO production with the IC50 values 38.7 and 16.7 µM, respectively.

7.
Sci Prog ; 106(2): 368504231180027, 2023.
Article En | MEDLINE | ID: mdl-37292010

It is easy to cause thermal damage to the bone tissue when the surgical robot performs skull drilling to remove bone flaps, due to the large diameter of the drill bit, the large heat-generating area, and the long drilling time. Therefore, in order to reduce the thermal damage during the robot-assisted skull drilling process, the relationship between the drilling parameters and the drilling temperature during the skull drilling was studied in this paper. Firstly, a dynamic numerical simulation model of the skull drilling process was established by ABAQUS, and a temperature simulation plan for skull drilling was designed based on the Box-Behnken method. Then according to the simulation results, a quadratic regression model of drill diameter, feed rate, drill speed, and drilling temperature was established by using the multiple regression method. By analyzing the regression model, the influence of drilling parameters on the drilling temperature was clarified. Finally, the bone drilling experiment was carried out, and the error percentage was lower than 10.5% through the experiment to verify the reliability of the conclusion, and a safety strategy was proposed to ensure the safety of the surgical drilling process based on this experiment.


Robotics , Temperature , Reproducibility of Results , Hot Temperature , Skull/surgery
8.
Ecotoxicol Environ Saf ; 256: 114874, 2023 May.
Article En | MEDLINE | ID: mdl-37054469

Lead (Pb), cadmium (Cd) and total mercury (THg) are toxic heavy metals (THMs) that are widely present in the environment and can cause substantial health problems. However, previous risk assessment studies have rarely focused on the elderly population and have usually targeted a single heavy metal, which might underestimate the long-term accumulative and synergistic effects of THMs in humans. Based on the food frequency questionnaire and inductively coupled plasma mass spectrometry, this study assessed external and internal exposures to Pb, Cd and THg in 1747 elderly people in Shanghai. Probabilistic risk assessment with the relative potential factor (RPF) model was used to assess the neurotoxicity and nephrotoxicity risks of combined THMs exposures. The mean external exposures of Pb, Cd and THg in Shanghai elderly were 46.8, 27.2 and 4.9 µg/day, respectively. Plant-based foods are the main source of Pb and THg exposure, while Cd is mainly from animal-based foods. The mean concentrations of Pb, Cd and THg were 23.3, 1.1 and 2.3 µg/L in the whole blood, and 6.2, 1.0 and 2.0 µg/L in the morning urine, respectively. Combined exposure to THMs leading to 10.0 % and 7.1 % of Shanghai elderly at risk of neurotoxicity and nephrotoxicity. The results of this study have important implications for understanding the profiles of Pb, Cd and THg exposure in the elderly living in Shanghai and provide data support for risk assessment and control of nephrotoxicity and neurotoxicity from combined THMs exposure in the elderly.


Drug-Related Side Effects and Adverse Reactions , Mercury , Metals, Heavy , Neurotoxicity Syndromes , Animals , Humans , Aged , Cadmium/toxicity , Mercury/analysis , Lead/analysis , China , Metals, Heavy/analysis , Heavy Metal Poisoning , Risk Assessment
9.
Med Biol Eng Comput ; 61(9): 2255-2268, 2023 Sep.
Article En | MEDLINE | ID: mdl-36976416

To determine the effect of muscle activation on the dynamic responses of the neck of a pilot during simulated emergency ejections. A complete finite element model of the pilot's head and neck was developed and dynamically validated. Three muscle activation curves were designed to simulate different activation times and levels of muscles during pilot ejection: A is the unconscious activation curve of the neck muscles, B is the pre-activation curve, and C is the continuous activation curve. The acceleration-time curves obtained during ejection were applied to the model, and the influence of the muscles on the dynamic responses of the neck was investigated by analyzing both angles of rotation of the neck segments and disc stresses. Muscle pre-activation reduced fluctuations in the angle of rotation in each phase of the neck. Continuous muscle activation caused a 20% increase in the angle of rotation compared to pre-activation. Moreover, it resulted in a 35% increase in the load on the intervertebral disc. The maximum stress on the disc occurred in the C4-C5 phase. Continuous muscle activation increased both the axial load on the neck and the posterior extension angle of rotation of the neck. Muscle pre-activation during emergency ejection has a protective effect on the neck. However, continuous muscle activation increases the axial load and rotation angle of the neck. A complete finite element model of the pilot's head and neck was established and three neck muscle activation curves were designed to investigate the effects of muscle activation time and level on the dynamic response of the pilot's neck during ejection. This increased insights into the protection mechanism of neck muscles on the axial impact injury of the pilot's head and neck.


Cervical Vertebrae , Muscles , Finite Element Analysis , Biomechanical Phenomena , Range of Motion, Articular/physiology , Stress, Mechanical , Cervical Vertebrae/physiology
10.
J Asian Nat Prod Res ; 25(10): 992-998, 2023 Oct.
Article En | MEDLINE | ID: mdl-36927194

Phytochemical analyses of Swertia davidii Franch. extracts using column chromatography and semi-preparative HPLC were performed. Two novel phenolic glycosides named swertiosides A and B (compounds 1 and 2, respectively) were isolated and characterized. Four known phenolic glycosides were also extracted (compounds 3-6). The structural characteristics of these novel compounds were analyzed using 1D, 2D NMR, and HRMS. All six compounds have never been isolated from this particular plant species before this study. Subsequent assessment of bioactive properties suggested that compounds 1 and 2 exhibited moderate levels of cytotoxicity.


Lignans , Swertia , Lignans/pharmacology , Swertia/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Phenols/pharmacology , Phenols/chemistry
11.
Molecules ; 27(22)2022 Nov 08.
Article En | MEDLINE | ID: mdl-36431777

Three undescribed phenylpropanoid derivatives, including two new bibenzyl constituents (1-2), one new stilbene constituent (3), together with five known compounds stilbostemin F (4), dihydropinosylvin (5), 2-(4-hydroxyphenyl)ethyl benzoate (6), 1-(4-hydroxybenzoyl)ethanone (7), and 4-hydroxy-3-prenylbenzoic acid (8), were isolated from the tuber of Asparagus cochinchinensis. The structures of 1-8 were elucidated according to UV, IR, HRMS, 1D and 2D-NMR methods together with the published literature. All of the isolated compounds were assessed for anti-inflammatory activity by acting on lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells in vitro. The results showed that compounds 2 and 5 were found to inhibit the production of nitric oxide (NO) with the IC50 value of 21.7 and 35.8 µM, respectively. In addition, further studies found that compound 2 demonstrated concentration-dependent suppression of the protein expression of iNOS and exerted anti-inflammatory activity via the NF-κB signalling pathway. The present data suggest that phenylpropanoid derivatives from the tuber of A. cochinchinensis might be used as a potential source of natural anti-inflammatory agents.


Anti-Inflammatory Agents , Asparagus Plant , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Plant Tubers , Lipopolysaccharides
12.
Protein Pept Lett ; 29(12): 1061-1071, 2022.
Article En | MEDLINE | ID: mdl-36045540

Platycodon grandiflorus is a well-known and widely distributed traditional herbal medicine and functional food in Asia, with triterpenoids as the main bioactive component in its roots. Acetyl-CoA C-acetyltransferase (AACT) is the initiation enzyme in the mevalonate pathway and plays an important role in the biosynthesis of terpenoids. OBJECTIVE: The objective of this study was to clone and identify the PgAACT function in P. grandiflorus. METHODS: The full-length sequence of PgAACT genes was isolated and cloned from P. grandiflorus by polymerase chain reaction (PCR). The recombinant plasmid was constructed using the pET-32a vector and expressed in E. coli Transetta (DE3) cells. Subcellular localization of AACT was observed in the epidermal cells of N. tabacum. Quantitative reverse transcription-PCR (qRT-PCR) was used to identify the PgAACT gene transcription levels. After MeJA treatment, the changes in AACT gene expression were observed, and UHPLC-Q-Exactive Orbitrap MS/MS was used to detect the changes in P. grandiflorus saponins. RESULTS: In this study, two full-length cDNAs encoding AACT1 (PgAACT1) and AACT2 (PgAACT2) were isolated and cloned from P. grandiflorus. The deduced PgAACT1 and PgAACT2 proteins contain 408 and 416 amino acids, respectively. The recombinant vectors were constructed, and the protein expression was improved by optimizing the reaction conditions. Sodium dodecyl sulphate-polycrylamide gel electrophloresis and western blot analysis showed that the PgAACT genes were successfully expressed, with molecular weights of the recombinant proteins of 61 and 63 kDa, respectively. Subcellular localization showed that the PgAACT genes were localized in the cytoplasm. Tissue specificity analysis of P. grandiflorus from different habitats showed that PgAACT genes were expressed in the roots, stems, and leaves. After MeJA treatment, the expression level of PgAACT genes and the content of total saponins of P. grandiflorus were significantly increased, suggesting that PgAACT genes play an important role in regulating plant defense systems. CONCLUSION: Cloning, expression, and functional analysis of PgAACT1 and PgAACT2 will be helpful in understanding the role of these two genes in terpene biosynthesis.


Platycodon , Saponins , Platycodon/genetics , Platycodon/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Escherichia coli/genetics , Tandem Mass Spectrometry , Cloning, Molecular , Terpenes
13.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article En | MEDLINE | ID: mdl-36142867

Seven undescribed phenylpropanoid constituents, including three new bibenzyl derivatives (1-3) along with four new benzofuran stilbene derivatives (4-7), were isolated from the aerial parts of Dioscorea polystachya. The structures of these compounds were elucidated using a combination of spectroscopic analyses, including UV, IR, HRESIMS, 1D, and 2D NMR. Further, all the compounds were evaluated on the anti-inflammatory activity for their inhibition of nitric oxide (NO) production by RAW 264.7 macrophages cells, and some of them (1-3 and 6) displayed inhibitory activity with IC50 values in the range of 9.3-32.3 µM. Moreover, compound 3 decreased the expression of iNOS in Western blot analysis, suggesting compound 3 is mediated via the suppression of an LPS-induced NF-κB inflammasome pathway.


Benzofurans , Bibenzyls , Dioscorea , Stilbenes , Animals , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Inflammasomes , Lipopolysaccharides/analysis , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , NF-kappa B/metabolism , Nitric Oxide/metabolism , Plant Components, Aerial/metabolism , RAW 264.7 Cells , Stilbenes/analysis
14.
Nat Prod Res ; : 1-5, 2022 Aug 25.
Article En | MEDLINE | ID: mdl-36008750

Two new phenolic compounds Fusagunolics A (1) and B (2) were isolated from the plant endophytic fungus Fusarium guttiforme, in addition to the previously known metabolites (3-6). The structures of these compounds was elucidated using a combination of spectroscopic analyses, including UV, HRESIMS, 1 D, and 2 D NMR, as well as electronic circular dichroism (ECD) and the optical rotatory dispersion (ORD). Further, the anti-inflammatory activity of all the compounds was evaluated to assess their capability to inhibit nitric oxide (NO) production by RAW 264.7 macrophages. The bioactive screening revealed that compounds 2 and 6 exhibited moderate inhibitory effects against NO production with the IC50 values 28.6 and 37.6 µM, respectively.

15.
Plant Signal Behav ; 17(1): 2089473, 2022 12 31.
Article En | MEDLINE | ID: mdl-35730590

Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.


Platycodon , Triterpenes , Acetates , Cyclopentanes , Gene Expression Regulation, Plant/genetics , Oxylipins , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Platycodon/genetics , Platycodon/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
16.
Micromachines (Basel) ; 13(2)2022 Jan 31.
Article En | MEDLINE | ID: mdl-35208363

In this paper, the design, fabrication and measurement of a thermoelectric MEMS microwave power sensor with the terminal load inline self-detection function is proposed. The structure of the sensor mainly includes a coplanar waveguide, a thermopile, two terminal load resistors and two calibration resistors. In order to realize the inline self-detection function, the load and calibration resistors are designed to form a voltage divider circuit. The fabrication of this sensor is compatible with the GaAs MMIC technology. The on-chip performance is tested by using a microwave experimental platform. The measured reflection loss is less than -10 dB at 0.1-10 GHz. When the bias voltage is not applied, the sensitivity of the sensor is 47.39 µV/mW@5 GHz and 32.58 µV/mW@10 GHz, respectively, and when the bias voltage is applied, the sensitivity is 47.50 µV/mW@5 GHz and 32.73 µV/mW@10 GHz, respectively. The difference between the two cases is less than 0.5% at the same frequency, which indicates that whether or not to apply the bias voltage has little effect on the sensitivity. In addition, when the calibration resistance is increased from 50 to 100 Ω, the current flowing through the load resistance is decreased under the same bias voltage. Therefore, the DC power consumed on the load resistance will be significantly reduced. This makes the measured and theoretical results show better agreement, thus verifying the validity of the design.

17.
Fitoterapia ; 153: 104988, 2021 Sep.
Article En | MEDLINE | ID: mdl-34246745

Orchidaceae, well known for its fascinating flowers, is one of the largest and most diverse families of flowering plants. There are many kinds of plants in this family; these are distributed practically globally and have high ornamental and medicinal values. Gastrodia elata Blume, a traditional Chinese medicinal herb, is a rootless and leafless achlorophyllous orchid. Phenolic compounds are considered to be the major bioactive constituents in G. elata, with antioxidant, antiangiogenic, neuroprotective, antidepressant, anxiolytic, and sedative activities. In this study, we determined the contents of six main phenolic components in tubers, stems and flowers from G. elata. Meanwhile, the transcriptomes of the tuber, stem and flower tissues of G. elata were obtained using the BGISEQ-500 platform. A total of 58.29 Gb of data and 113,067 unigenes were obtained, of which 74,820 unigenes were functionally annotated against seven public databases. Differentially expressed genes between tuber, stem and flower tissues were identified. A total of 76 DEGs encoding eight key enzymes were identified as candidate genes involved in the biosynthesis of phenolics in G. elata. For further validation, the expression levels of unigenes were measured using quantitative real-time PCR. Our results greatly enrich the transcriptomic data of G. elata and provide valuable information for the identification of candidate genes involved in the biosynthesis of secondary metabolites.


Gastrodia/genetics , Genes, Plant , Phenols/metabolism , Transcriptome , Biosynthetic Pathways/genetics , Flowers/genetics , Molecular Structure , Plant Stems/genetics , Plant Tubers/genetics , Secondary Metabolism/genetics
18.
Planta ; 254(2): 34, 2021 Jul 21.
Article En | MEDLINE | ID: mdl-34291354

MAIN CONCLUSION: Comprehensive transcriptome analysis of different Platycodon grandiflorus tissues discovered genes related to triterpenoid saponin biosynthesis. Platycodon grandiflorus (Jacq.) A. DC. (P. grandiflorus), a traditional Chinese medicine, contains considerable triterpenoid saponins with broad pharmacological activities. Triterpenoid saponins are the major components of P. grandiflorus. Here, single-molecule real-time and next-generation sequencing technologies were combined to comprehensively analyse the transcriptome and identify genes involved in triterpenoid saponin biosynthesis in P. grandiflorus. We quantified four saponins in P. grandiflorus and found that their total content was highest in the roots and lowest in the stems and leaves. A total of 173,354 non-redundant transcripts were generated from the PacBio platform, and three full-length transcripts of ß-amyrin synthase, the key synthase of ß-amyrin, were identified. A total of 132,610 clean reads obtained from the DNBSEQ platform were utilised to explore key genes related to the triterpenoid saponin biosynthetic pathway in P. grandiflorus, and 96 differentially expressed genes were selected as candidates. The expression levels of these genes were verified by quantitative real-time PCR. Our reliable transcriptome data provide valuable information on the related biosynthesis pathway and may provide insights into the molecular mechanisms of triterpenoid saponin biosynthesis in P. grandiflorus.


Platycodon , Saponins , Triterpenes , Gene Expression Profiling , Platycodon/genetics , Transcriptome
19.
Anal Methods ; 13(4): 477-483, 2021 01 28.
Article En | MEDLINE | ID: mdl-33459309

Platycosides, the generally recognized main active constituents of Platycodi radix, have been studied extensively for their wide pharmacological activities. Herein, we have successfully developed an efficient method for the enrichment and comprehensive isolation of platycosides from Platycodi radix by MCI resin column chromatography (CC) and two different modes of high-speed counter-current chromatography (HSCCC). MCI resin CC was the preferable enrichment operation for platycosides from the 70%-ethanol extract of Platycodi radix and rendered target platycosides when eluted by 60% aqueous methanol solution. As for the separation, two different modes, including isocratic HSCCC and linear-gradient HSCCC, were applied together to separate the platycosides using a mixture of ethyl acetate, n-butanol and water coupled with evaporative light scattering detection, for the first time. Isocratic HSCCC was applied to separate crude platycosides from Platycodi radix using ethyl acetate-n-butanol-water (1 : 1 : 2, v/v), yielding seven pure platycosides (compounds 1-6, 8) and two fractions of enriched mixtures of compounds 7, 9, 10, and 11. Linear-gradient HSCCC was employed to rapidly separate compounds 7, 9, 10, and 11 by constantly changing the proportions of ethyl acetate and n-butanol in the ethyl acetate-n-butanol-water solvent system. Finally, platycoside E (1), deapio-platycodin D3 (2), platycodin D3 (3), deapio-platycodin D2 (4), platycodin D2 (5), platycodin D (6), polygalacin D2 (7), polygalacin D (8), and three tautomers, namely 2''-O-acetylplatycodin D (9) and 3''-O-acetylplatycodin D (9'), 2''-O-acetylpolygalacin D2 (10) and 3''-O-acetylpolygalacin D2 (10'), and 2''-O-acetylpolygalacin D (11) and 3''-O-acetylpolygalacin D (11'), were obtained from 300 mg of crude platycosides from Platycodi radix.


Platycodon , Countercurrent Distribution , Plant Roots
20.
Nat Prod Res ; 35(7): 1199-1206, 2021 Apr.
Article En | MEDLINE | ID: mdl-31305141

Five new natural compounds (1-5) along with four known ones, involving dibenzo-α-pyrone derivatives, a benzo-γ-pyrone derivative and an amide-type compound were obtained from Alternaria alternata, an endophyte isolated from Paeonia lactiflora. The structures of these isolates were elucidated by intensive analysis of spectroscopic data including NMR, HRMS (ESI and EI), UV and IR spectra. Compounds (1-4) were evaluated for their cytotoxicities against five selected human tumourtumour cell lines (A-549, MDA-MB-231, MCF-7, KB and KB-VIN), and compound 3 exhibited activities against MDA-MB-231and MCF-7 with IC50 values of 20.1 µM and 32.2 µM.


Alternaria/chemistry , Endophytes/chemistry , Plants/microbiology , Biological Products/chemistry , Biological Products/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Proton Magnetic Resonance Spectroscopy
...